Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

Give a short description of the nature of the problem and the eventual numerical
methods you have used.

Describe the algorithm you have used and/or developed. Here you may find it con-
venient to use pseudocoding. In many cases you can describe the algorithm in the
program itself.

Include the source code of your program. Comment your program properly.

If possible, try to find closed form solutions, or known limits in order to test your
program when developing the code.

Include your results either in figure form or in a table. Remember to label your
results. All tables and figures should have relevant captions and labels on the axes.

Try to evaluate the reliabilty and numerical stability /precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

Try to give an interpretation of you results in your answers to the problems.

Critique: if possible include your comments and reflections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you’ve made
when solving the exercise. We wish to keep this course at the interactive level and
your comments can help us improve it.

Try to establish a practice where you log your work at the computerlab. You may
find such a logbook very handy at later stages in your work, especially when you
don’t properly remember what a previous test version of your program did. Here you
could also record the time spent on solving the exercise, various algorithms you may
have tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript for-
mats. As programming language we prefer that you choose between C/C++, Fortran2008
or Python. The following prescription should be followed when preparing the report:

Use Devilry to hand in your projects, log in at http://devilry.ifi.uio.no with
your normal UiO username and password and choose either 'fys3150" or 'fys4150’.
There you can load up the files within the deadline.


 http://devilry.ifi.uio.no

e Upload only the report file! For the source code file(s) you have developed please
provide us with your link to your github domain. The report file should include
all of your discussions and a list of the codes you have developed. Do not include
library files which are available at the course homepage, unless you have made specific

changes to them.

e Comments from us on your projects, approval or not, corrections to be made etc can
be found under your Devilry domain and are only visible to you and the teachers of

the course.

Finally, we encourage you to work two and two together. Optimal working groups consist
of 2-3 students. You can then hand in a common report.

Project 4, Diffusion of neurotransmitters in the synaptic
cleft, deadline November 11, 12pm

The dominant way of transporting signals between neurons (nerve cells) in the brain is
by means of diffusion of particular signal molecules called neurotransmitters across the
synaptic cleft separating the cell membranes of the two cells. A drawing of a synapse is

given in Fig. [Il
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Figure 1: Drawing of a synapse. The axon terminal is the knoblike structure and the spine of the
receiving neuron is the bottom one. The synaptic cleft is the small space between the presynaptic

(axon) and postsynaptic (dendritic spine) membrane.

Publ., 2000)

(From Thompson: “The Brain”, Worth
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Figure 2: Left: Schematic drawing of the process of vesicle release from the axon terminal and
release of transmitter molecules into the synaptic cleft. (From Thompson: “The Brain”, Worth
Publ., 2000). Right: Molecular structure of the two important neurotransmitters glutamate and

GABA.

Following the arrival of an action potential in the axon terminal a process is initiated in
which (i) vesicles inside the axon terminal (filled with neurotransmitter molecules) merge
with the presynaptic (axon) membrane and (ii) release neurotransmitters into the synaptic
cleft. These neurotransmitters diffuse across the synaptic cleft to receptors on the postsy-
naptic side which “receives” the signal. A schematic illustration of this process is shown in
Fig. 2(left). Since the transport process in the synaptic cleft is governed by diffusion, we
can describe it mathematically by
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where wu ais the concentration of the particular neurotransmitter, and D is the diffusion
coefficient of the neurotransmitter in this particular environment (solvent in synaptic cleft).
If we assume (i) that the neurotransmitter is released roughly equally on the “presynap-
tic” side of the synaptic cleft, and (ii) that the synaptic cleft is roughly equally wide across
the whole synaptic terminal, we can, given the large area of the synaptic cleft compared
to its width, assume that the neurotransmitter concentration only varies in the direction
across the synaptic cleft (from presynaptic to postsynaptic side). We choose this direction
to be the z-direction (see Fig. B]). In this case u(r) = u(z), the diffusion equation reduces
to )
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Immediately after the release of a neurotransmitter into the synaptic cleft (¢ = 0) the
concentration profile in the x-direction is given by

u(z,t =0) = N(x), (3)

where NV is the number of particle released into the synaptic cleft per area of membrane.



To get an idea over the time-dependence of the neurotransmitter concentration at the
postsynaptic side (z = d), we can look at the solution of a “free” random walk (i.e., no
obstacles or particle absorbers in either direction). The solution of Eq. ([2]) with the initial
condition in Eq. ([B]) is given by (see Nelson: Biological Physics, p. 143 or Lectures notes
chapter 12.3)

N
u(z,t) = e /AL (4)
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The concentration at the postsynaptic side u
t — oo.

The above assumption regarding the neurotransmitter molecules undergoing a “free”
random walk, is obviously a simplification. In the true diffusion process in the synaptic
cleft the neurotransmitter molecules will, for example, occasionally bump into the presy-
naptic membrane they came from. Also at the postsynaptic side the neurotransmitters are
absorbed by receptors located on the postsynaptic cell membrane and are thus (temporally)
removed from the solution.

To approach this situation in our mathematical model we can impose the following
boundary and initial conditions with = € [0, d]

—~

d,t) approaches 0 in the limit ¢ — 0 dand

u(lx=0,t>0)=up, u(r=d,allt) =0, u(0<z<d,t<0)=0 . (5)

Hereafter we set d = 1. This corresponds to that (i) for ¢ < 0 there are no neurotransmitters
in the synaptic cleft, (ii) for t > 0 the concentration of neurotransmitters at the presynaptic
boundary of the synaptic cleft (x = 0) is kept fizeda at u = up = 1 in our case, and (iii) that
the postsynaptic receptors immediately absorb nearby neurotransmitters so that © = 0 on
the postsynaptic side of the cleft (xr =d = 1).

The full solution of the diffusion equation with boundary /initial conditions in Eq. ()
can be found in a closed form. We will use this solution to test our numerical calculations.

We are thus looking at a one-dimensional problem
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Figure 3: Schematic drawing of the synaptic cleft in our model. The black dots represent neu-
rotransmitter molecules, and the situation shown corresponds to the situation immediately after
neurotransmitter release into the synaptic cleft.



with initial conditions, i.e., the conditions at t = 0,
u(z,0) =0 O0<z<d
with d = 1 the length of the z-region of interest. The boundary conditions are
uw(0,t)=1 t>0,

and
u(d,t)=0 t>0.

In this project we want to study the numerical stability of three methods for partial
differential equations (PDEs). These methods are

1. The explicit forward Euler algorithm with discretized versions of time given by a
forward formula and a centered difference in space resulting in

_ulr, b+ AY) —u(x,t)  u(wg,t; + At) —u(z, t))
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u(z 4+ Az, t) — 2u(x, t) + u(x — Az, t)
ul‘x ~ )
Ax?
or
u(z; + Az, t;) — 2u(zg, t;) + u(z; — Az, ty)
Ugy .
Ax?

2. The implicit Backward Euler with
_ul,t) —ulz,t — At)  u(wg, ty) — u(wg, t; — At)

t~ =

At At
and
w(x 4+ Az, t) — 2u(x, t) + u(x — Az, t)
Ugy = ?
Ax?
or
u(z; + Az, t;) — 2u(zy, t;) + u(z; — Az, ty)
Upy = ?
Ax?
3. Finally we use the implicit Crank-Nicolson scheme with a time-centered scheme at
(x,t+ At/2)

. u(z, t+ At) —u(x,t)  w(zg,t; + At) — u(zy, t;)
t .

At At

The corresponding spatial second-order derivative reads

1 (u(xl + Ax,t;) — 2u(z;, t;) + u(x; — Az, tj)jL

taw =5 Az?
u(w; + Ax,t; + At) — 2u(wy, t; + At) + u(z; — Az, t; + At))
Ax? '

Note well that we are using a time-centered scheme wih ¢ + At/2 as center.
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Find the closed form solution to this problem. You will need this in order to study
the numerical accuracy of your results. To find the closed-form solution, we will
need the stationary solution (steady-state solution). The solution to the steady-state
problem is on the form u(z) = Az +b. The solution for the steady-state case ug that
obeys the above boundary conditions is

us(z) =1—x.

You can use this solution to define a new function v(z) = u(z) — us(x) with boundary
conditions v(0) = v(d) = 0. The latter is easier to solve both numerically and on a
closed form.

Write down the algorithms for these three methods and the equations you need to
implement. For the implicit schemes show that the equations lead to a tridiagonal
matrix system for the new values.

Find the truncation errors of these three schemes and investigate their stability prop-
erties.

Implement the three algorithms in the same code and perform tests of the solution
for these three approaches for Ax = 1/10, h = 1/100 using At as dictated by the
stability limit of the explicit scheme. Study the solutions at two time points t; and
to where u(z,t) is smooth but still significantly curved and u(z,t5) is almost linear,
close to the stationary state. Remember that for solving the tridiagonal equations
you can use your code from project 1.

Compare the solutions at t; and ¢, with the closed form result for the continuous
problem. Which of the schemes would you classify as the best?



